# Fate and Transport Approach Summary

Carl Stivers, Anchor Environmental



### **Background**

- EPA questions about modeling of chemical fate and transport processes
- Questions occur in a number of contexts:
  - Monitored Natural Recovery (MNR) evaluations
  - Food Web Modeling (FWM)
  - Hydrodynamic Modeling (HDM)
  - Groundwater Evaluations (GW)



### **Background and Purpose**

- EPA concerned that eventual fate (and related risks) of chemicals will not be evaluated
- EPA suggesting that "robust" 3-D model needed
- LWG Tech Team concerns to robust model:
  - Impacts schedule to FS in 2007
  - History suggests will not be directly used in cleanup decisions
  - Expensive
- LWG Strategy Team F & T Group Purpose
  - Make sure we have a comprehensive approach
  - Answer all of EPA's stated questions
  - Explain that approach to EPA



### **Fate and Transport Processes**





### **Determine EPA's F&T Questions**

- Reviewed EPA comments on:
  - MNR approach
  - Hydrodynamic modeling
- Reviewed EPA discussions on:
  - Food Web Model
  - Groundwater approach
- Compiled into a list of all EPA stated issues
- Prioritized list based on our understanding of EPA's level of concern (subjective)
- Segregated questions that have a detailed process, documents, and/or group already addressing



### Filter EPA's F&T Questions

- Prioritized list based on our understanding of EPA's level of concern (subjective)
- Segregated questions that have a detailed process, documents, and/or group already addressing this



## **Primary EPA F&T Questions**

- 1. What are future risks due to erosion/ redistribution of sediments? (MNR and HDM)
- 2. What is the impact of various source control activities and remedial action alternatives on fish tissue concentrations? (FWM and MNR)
- 3. What is the potential for recontamination? (MNR)
- 4. What are acceptable sediment and water concentrations as back calculated from acceptable tissue concentrations? (FWM)
- 5. What are the effects of wind/wave/wake action and propwash on sediment erosion/redistribution? (MNR)



## Questions Already Handled by Existing Processes and Groups

- What are groundwater pathways and impacts to river media including sediments, surface water, and tissue? (GW)
- 2. What is the potential for MNR via primarily depositional processes? (MNR)
- 3. What is the ranking of risks from various sites and/or chemicals to human and ecological receptors? (FWM)
- 4. What are benthic invertebrate and fish tissue chemical concentrations in species or at locations where little data exists? (Risk Assessment)



### Other Questions

- Are sediments posing risk leaving the site? [Corollary to first question regarding risks caused by redistribution of sediments] (MNR)
- Several lines of evidence:
  - Downstream areas have relatively low conc.
  - Cleaning up Study Area will drive them lower
  - General info. indicates this is a dispersive process – downstream conc. always lower than upstream



### **Approach for High Priority Questions**

- Review existing tools, their limitations, and interactions
- Summarize approach based on existing tools
- Identify data needs for approach
- Summarized in table matrix



# 1. What are future risks due to erosion/ redistribution of sediments? (MNR and HDM)

- Erosion Use propwash, wave/wake, hydrodynamic model outputs, and sediment core data to define upstream erosion.
- Deposition This information feeds into simple conservative downstream deposition assumptions facilitated by MNR model and sediment trap data.



# 1. What are future risks due to erosion/ redistribution of sediments? (MNR and HDM)



# 2. What is the impact of various source control activities and remedial action alternatives on fish tissue concentrations? (FWM and MNR)

- Erosional use hydrodynamic, propwash, and wave/wake models to predict conc.
- Remediation Areas use background concentrations.
- MNR Areas use MNR model (sed. trap, core data)
- Calculate overall site-wide sediment conc. from above.
- Estimate surface water reductions from percent of controlled flows based on DEQ information.
- Use a range of assumptions if DEQ info not available.
- Enter sed./water conc. into Food Web Model future steady state concentrations.
- Use decay constant for time to reach predicted tissue conc. (does not use FWM).



## 2. What is the impact of various source control activities and remedial action alternatives on fish tissue concentrations? (FWM and MNR)





#### 3. What is the potential for recontamination? (MNR)

- Determine erosional and depositional areas from hydrodynamic model.
- Depositional estimate initial "clean" conc. in remedial areas and extrapolate to future using MNR model, sediment trap, and groundwater data.
- Erosional/Dynamic Use new "clean" surface (e.g., dredged or capped) as the chemical concentration. Assess groundwater inputs based on DEQ and LWG generated groundwater data and MNR model.
- Source Controls Estimate future source control by based on DEQ information regarding percent of flows to be controlled. If not available, use simple range of reduction assumptions.



### 3. What is the potential for recontamination? (MNR)





# 4. What are acceptable sediment and water concentrations as back calculated from acceptable tissue concentrations? (FWM)

- Use Food Web Model to directly calculate through iterative approach
- Determine sediment and water concentrations that lead to tissue concentrations associated with specific risk estimates.
- Conduct distributional/statistical analysis of sediment data outside model
  - Determine if hot spot removal scenarios, would achieve necessary overall sediment concentration goals.



# 5. What are the effects of wind/wave/wake action and propwash on sediment erosion/redistribution? (MNR)

- Use readily available propwash models and wind/wake calculations
- Use grain size, river use, and water depth info. to understand and map areas that may be susceptible to erosion of this type.
- Determine reasonable maximum depth of erosion.
- Examine sediment core data to determine expected conc. of sediments at erosion depth.
- Compare these concentrations to risk based goals to determine potential future risks.



### **Data Needs**

- Summarized in matrix in process
- Mostly available from already planned efforts and/or existing information
- New data requirements are relatively minimal (although not zero)



#### **Path Forward**

- Present our approach to EPA (this presentation)
- Obtain feedback
- Discuss with EPA questions regarding robust 3-D model
  - Schedule implications?
  - Does it really raise certainty? (black box effect)
  - Is it really used in the ROD? (point to other sites)
- Map out EPA agreed approach and implement.

